MDI+: A Flexible Random Forest Feature Importance Framework

Tiffany Tang June 18, 2023

Joint with:

Abhi Agarwal Ana Kenney

Tan

Why Random Forests?

- + A **powerful, nonparametric prediction algorithm**, which often outperforms deep learning on moderate-sized tabular datasets
 - ... the method that performs consistently well across all dimensions is random forests, **??** followed by neural nets, boosted trees, and SVMs. [11 datasets]
 - Caruana, Karampatziakis, Yessenalina (2008)
 - 44 The classifiers most likely to be the bests are the random forest versions. [121 data sets, 179 models]

- Fernandez-Delgado, Cernadas, Barro, Amorim (2014)

- Why do tree-based models still outperform deep learning on tabular data? ... tree-based models [i.e., random forests, XGBoost] remain state-of-the-art on medium-sized data (~10K samples) even without accounting for their superior speed. [45 data sets]
 - Grinsztajn, Oyallon, Varoquaux (2022)

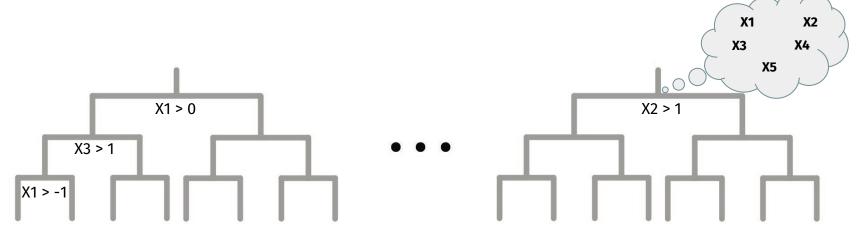
Why Random Forests?

- + A **powerful, nonparametric prediction algorithm**, which often outperforms deep learning on moderate-sized tabular datasets
- + Numerous feature importance measures exist to enable **interpretability**
 - **Mean Decrease in Impurity (MDI):** most popular in practice (and default feature importance in sklearn)

Random Forest (RF)

A collection of decision trees, where

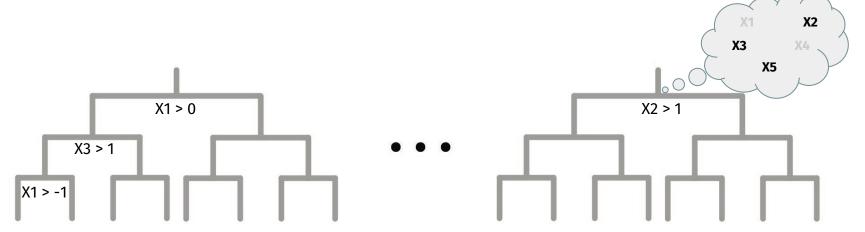
- each tree is fitted on a different **bootstrap** version of the data
- features are subsampled at each node



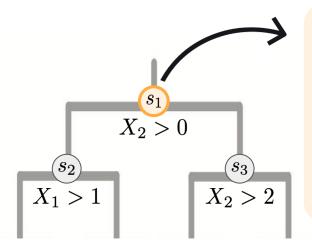
Random Forest (RF)

A collection of decision trees, where

- each tree is fitted on a different **bootstrap** version of the data
- features are subsampled at each node



Mean Decrease in Impurity (MDI)

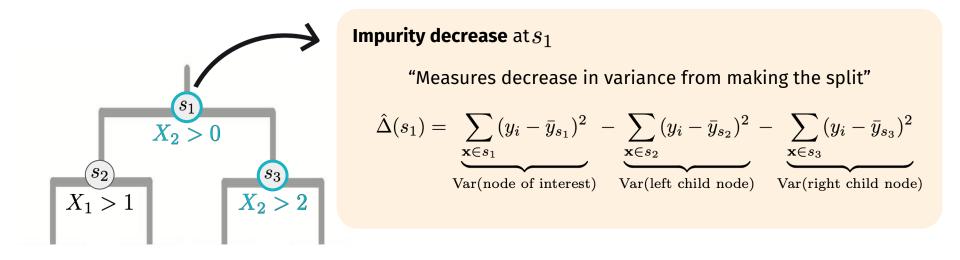


Impurity decrease $\mathrm{at}s_1$

"Measures decrease in variance from making the split"

$$\hat{\Delta}(s_1) = \sum_{\substack{\mathbf{x} \in s_1 \\ \text{Var(node of interest)}}} (y_i - \bar{y}_{s_1})^2 - \sum_{\substack{\mathbf{x} \in s_2 \\ \text{Var(left child node)}}} (y_i - \bar{y}_{s_2})^2 - \sum_{\substack{\mathbf{x} \in s_3 \\ \text{Var(right child node)}}} (y_i - \bar{y}_{s_3})^2$$

Mean Decrease in Impurity (MDI)



For each feature k, MDI(k) is the weighted sum of impurity decreases across nodes that split on X_k , e.g., $n_1 \land \dots n_2 \land$

$$MDI(X_2) = \frac{n_1}{n}\hat{\Delta}(s_1) + \frac{n_3}{n}\hat{\Delta}(s_3)$$

Advantages of MDI:

- Conceptually simple
- Fast to compute

Well-known drawbacks of MDI:

Unstable in **low-signal** problems

Biased against features are highly correlated or have low entropy

Inefficient measure if **additive structure** is present

Nicodemus, K. K. and Malley, J. D. "Predictor correlation impacts machine learning algorithms: implications for genomic studies." *Bioinformatics* (2009) Nicodemus, K. K. "On the stability and ranking of predictors from random forest variable importance measures." *Briefings in Bioinformatics* (2011) Tan, Y. S., Agarwal, A., and Yu, B. "A cautionary tale on fitting decision trees to data from additive models: generalization lower bounds." AISTATS (2022) MDI+: A generalized mean decrease in impurity MDI+ provides a flexible framework for computing feature importances using RFs

- + Avoids aforementioned drawbacks of MDI
- + Allows the analyst to tailor the feature importance computation to the data/problem structure (e.g., handle outliers, classification vs. regression)

Key idea: Leverage a connection between decision trees and linear regression

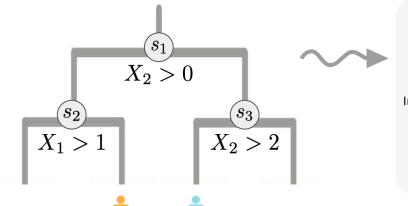
Connecting decision trees to linear regression

Step 1: Obtain engineered "stump" features $\psi(\cdot\,;s_k)$ from decision tree



Connecting decision trees to linear regression

Step 1: Obtain engineered "stump" features $\psi(\cdot ; s_k)$ from decision tree



$$\psi(\mathbf{x}; \overset{\mathsf{node}}{\underset{\mathbf{x}}{\bullet}}) = \begin{cases} 0 & \text{if } \mathbf{x} \notin s_k \\ \frac{-N_R}{\sqrt{N_L N_R}} & \text{if } \mathbf{x} \in \text{left child of } s_k \\ \frac{N_L}{\sqrt{N_L N_R}} & \text{if } \mathbf{x} \in \text{right child of } s_k \end{cases}$$

$$\text{where } N_R = \text{number of samples in right child of } s_k \\ N_L = \text{number of samples in left child of } s_k \end{cases}$$

$$\Psi(\mathbf{X}; \mathcal{S}) := egin{pmatrix} s_1 & s_2 & s_3 \ \hline - & + & 0 \ \hline + & 0 & - \ \hline \mathbf{f} \ \end{bmatrix}$$

A new basis using supervised tree features Connecting decision trees to linear regression

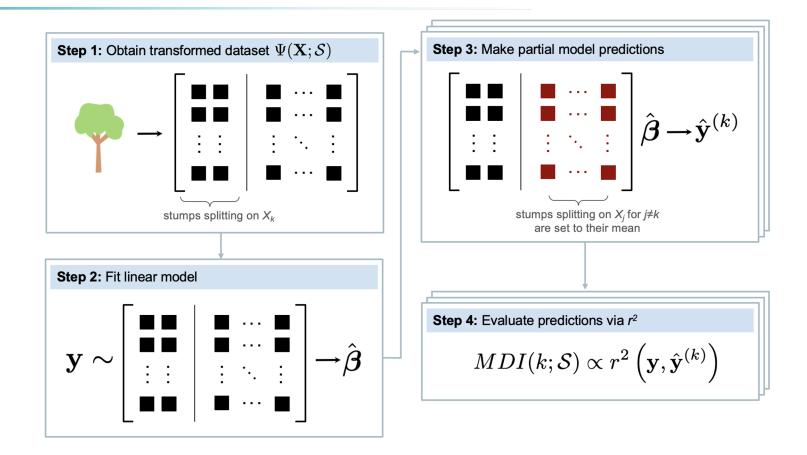
Step 2: Fit OLS on stump features

$$\mathbf{y} \sim \Psi(\mathbf{X}, \mathcal{S})$$

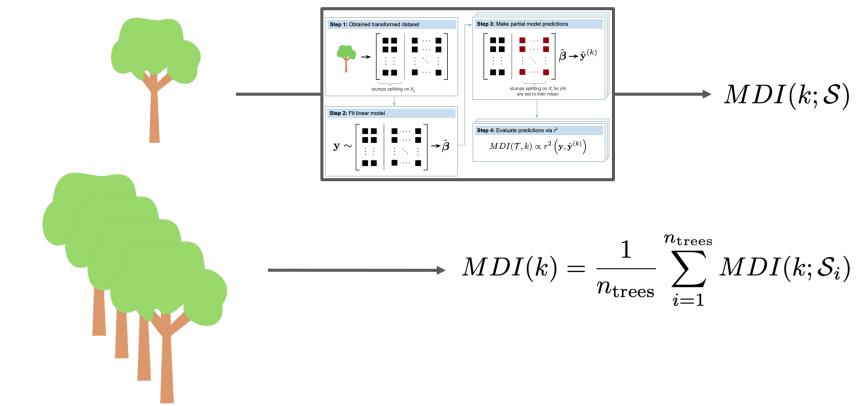
Key Connection: OLS predictions = original tree predictions [Klusowski 2021] assuming tree prediction = mean response per leaf node (e.g., in CART)

Upshot: Can build upon this connection to reinterpret MDI

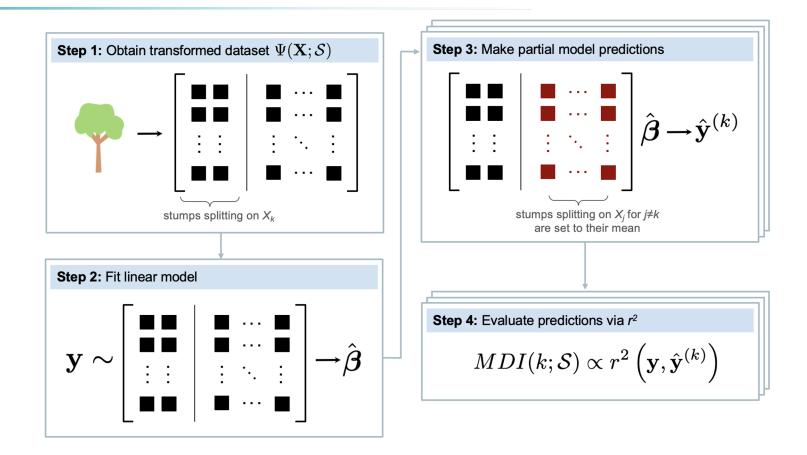
Reinterpreting MDI



Reinterpreting MDI

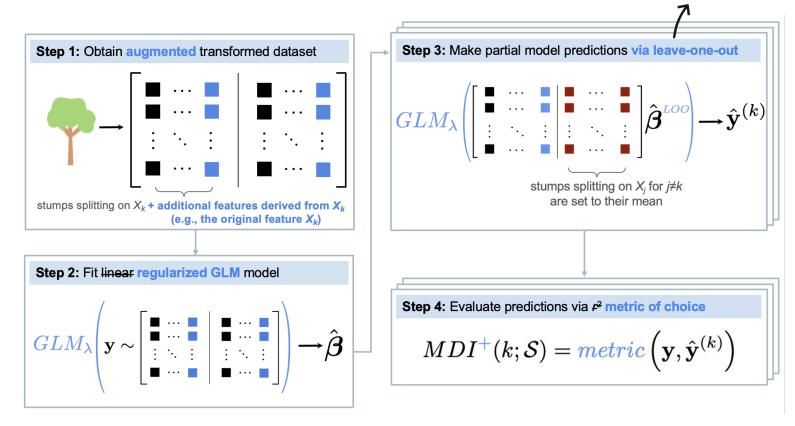


Reinterpreting MDI



MDI+: A Generalized Mean Decrease in Impurity

Approximate leave-one-out predictions can be computed without refitting the RF



Results

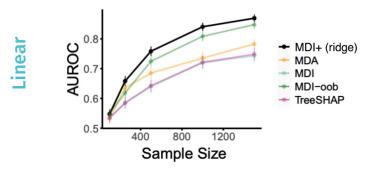
Roadmap of Empirical Results

- + **Correlation/entropy bias:** MDI+ overcomes correlation and entropy bias using out-of-sample prediction
- + **Real data-inspired simulations:** MDI+ improves feature rankings in various regression, classification, and robust regression scenarios
 - Regression: MDI+ with ridge regression as GLM + r² metric
 - Classification: MDI+ with l₂-regularized logistic regression as GLM + log-loss metric
 - Robust regression: MDI+ with regularized Huber regression as GLM + Huber loss metric
- + **Two real data case studies:** MDI+ identifies well-known gene predictors with greater stability than competing methods (for drug response prediction and breast cancer subtyping)

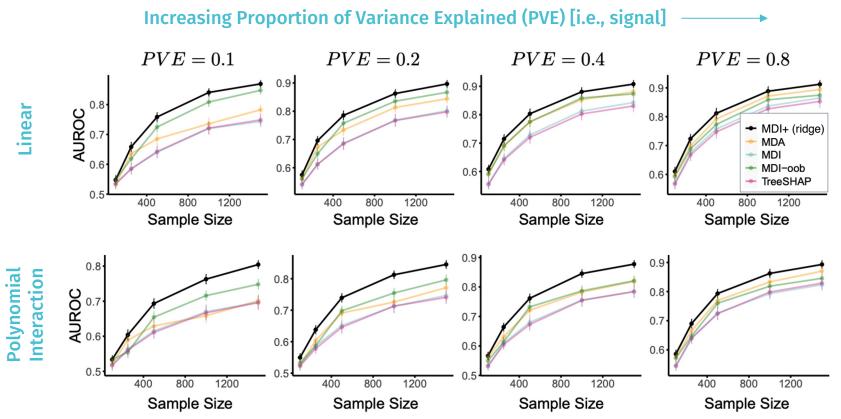
Roadmap of Empirical Results

- + **Correlation/entropy bias:** MDI+ overcomes correlation and entropy bias using out-of-sample prediction
- + **Real data-inspired simulations:** MDI+ improves feature rankings in various regression, classification, and robust regression scenarios
 - Regression: MDI+ with ridge regression as GLM + r² metric
 - Classification: MDI+ with l₂-regularized logistic regression as GLM + log-loss metric
 - Robust regression: MDI+ with regularized Huber regression as GLM + Huber loss metric
- + **Two real data case studies:** MDI+ identifies well-known gene predictors with greater stability than competing methods (for drug response prediction and breast cancer subtyping)

Regression simulation results

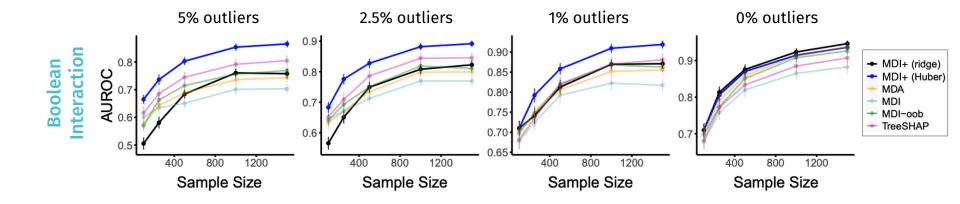


Regression simulation results



In the presence of outliers

Tailoring GMDI to the problem setting improves feature ranking accuracy



Summary and Discussion

- + MDI+ builds upon the *r*² interpretation of MDI
- + MDI+ provides a flexible framework for feature importances using RFs that
 - \circ Overcomes many of the inductive biases of decision trees and limitations of MDI
 - Allows the analyst to tailor the feature importance computation to the data/problem structure

+ Connection between decision trees and linear regression opens the door to

- A new class of prediction algorithms that leverage the tree basis/stump features
- Possibility to build upon familiar linear regression tools (e.g., for inference)
- + Code in imodels python package: <u>https://github.com/csinva/imodels/tree/master</u>
 - Notebook for example usage: <u>https://github.com/csinva/imodels/blob/master/notebooks/mdi_plus_demo.ipynb</u>

Thank you!