
Tiffany Tang
Applied and Computational Mathematics and Statistics
University of Notre Dame
ttang4@nd.edu  

Towards reliable experimental 
recommendations of gene-gene interactions 

mailto:ttang4@nd.edu


Our Interdisciplinary Team

James PriestEuan Ashley

Bin Yu Ben Brown Tiffany Tang Ana Kenney Omer Ronen Abhi Agarwal

Qianru Wang Nate Youlton Chad Weldy Weston Hughes

Rima Arnaout Atul Butte

Xiao Li Karl Kumbier Merle Behr

PIs Students/Postdocs

Victoria Parikh

2

Euan Ashley

Bin Yu

Qianru Wang

Ana Kenney Omer Ronen

Nate Youlton Chad Weldy Weston Hughes



Outline

1 Problem Background

2 Low-signal Iterative Random Forest (lo-siRF)
For recommending genes and gene-gene interactions

3 Experimental Validation

3



Problem Background
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17.9 million people die each year from CVDs

32% of all deaths worldwide

2x more Americans died from CVD than COVID-19 in 2020

Risk factors for CVD: poor diet, physical inactivity, tobacco use, genetic factors

A Public Health Crisis: Cardiovascular Disease

Source: World Health Organization, Ahmad and Anderson (JAMA, 2021)
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A Public Health Crisis:

Cardiovascular disease (CVD) is the leading cause of death globally and in the US

https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://jamanetwork.com/journals/jama/fullarticle/2778234


Common tools: genome-wide association studies (GWAS), polygenic risk scores
[Khera et al. (2018), Bycroft et al. (2018), Shah et al. (2020), Pirruccello et al. (2020), Meyer et al. (2020), Harper et al. (2021), Khurshid et al. (2022), …]

Our biological system is far more complex than this → “missing heritability”

Historically, research has focused on identifying genetic variants that have 
marginally additive effects on the phenotype

effect of 
variant B

Traditional tools for detecting genetic effects
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Epistasis is the non-additive interaction of genetic effects*

effect of 
variant B

Beyond the marginally additive curtain: Epistasis 
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* Many technical definitions: see Bateson (1909), Fisher (1919), Wade et al. (2001), Cordell (2002), Ritchie and Van Steen (2018)



Computational Challenges: exhaustive search is computationally expensive

Ex. 100,000 genetic variants → ~5 billion pairwise interactions!

Statistical Challenges: unclear what is an appropriate statistical model

What about higher-order interactions? (Not just pairwise)

What about nonlinear interactions? (e.g., f(xA)f(xB), not just xAxB)

Experimental Challenges: difficult to experimentally assess small effect sizes; 
requires very precise, high-throughput measurements

Barriers to detecting epistasis
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Our aim (very broadly)
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Gene / interaction
recommendation system

Wet-lab 
experimental validation

+

To develop an end-to-end pipeline for identifying 
genes and gene-gene interactions that affect cardiovascular disease.

Computationally-tractable interaction search 
engine for higher-order, nonlinear interactions

✓  Precise, high-throughput phenotyping via 
microfluidics-enabled gene silencing experiments

✓  



Which cardiovascular phenotype?
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Attempt #1: 
Hypertrophic Cardiomyopathy (HCM)
● High prevalence (~1 in 500)
● Team’s clinical expertise
● Experimental capabilities for 

measuring cell size

Major roadblock with HCM:
● ~50% balanced classification accuracy
● Severe under-diagnosis → noisy labels

Left Ventricular Hypertrophy



Which cardiovascular phenotype?
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Attempt #1: 
Hypertrophic Cardiomyopathy (HCM)
● High prevalence (~1 in 500)
● Team’s clinical expertise
● Experimental capabilities for 

measuring cell size

Major roadblock with HCM:
● ~50% balanced classification accuracy
● Severe under-diagnosis → noisy labels

Left Ventricular Hypertrophy

Normal Heart Left Ventricular 
Hypertrophy

Image Source: https://www.mayoclinic.org/diseases-conditions/left-ventricular-hypertrophy/symptoms-causes/syc-20374314 

Thickened 
heart wall

https://www.mayoclinic.org/diseases-conditions/left-ventricular-hypertrophy/symptoms-causes/syc-20374314


Left Ventricular Hypertrophy (LVH)
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Carries significant independent risk for 
incident heart failure, atrial arrhythmia, 
and sudden cardiac death

A distinguishing clinical feature of HCM 



Left Ventricular Hypertrophy (LVH)
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Carries significant independent risk for 
incident heart failure, atrial arrhythmia, 
and sudden cardiac death

A distinguishing clinical feature of HCM 

A quantitative proxy for LVH, 
left ventricular mass indexed by body 
surface area (LVMi), can be extracted 
from cardiac MRIs using deep learning 
[Bai et al. (2018)] LVMiLVM

(LVM indexed by body surface area)

Cardiac MRI-derived LVMi

Weston Hughes



n = 30K patients from white British unrelated population with cardiac MRIs

p = 15 million imputed SNPs

UK Biobank Data
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Epistasis…



Precise, high-throughput phenotyping via 
microfluidics-enabled knockdown experiments

Our contribution
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Gene / interaction
recommendation system

Wet-lab 
experimental validation

+

We develop an end-to-end pipeline for identifying 
genes and gene-gene interactions that affect left ventricular mass.

Computationally-tractable interaction search 
engine for higher-order, nonlinear interactions

✓  ✓  

Tailored for low-signal phenotypes ✓  

Suitable for high-dimensional data✓  



Low-signal iterative random 
forest (lo-siRF)
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Challenges Low Signal iRF (lo-siRF)

● High-dimensionality

Finding interactions

Very low signal

Domain-inspired dimension reduction 
via GWAS

Iterative Random Forest (iRF)
A computationally-efficient search engine to find 
stable, higher-order, nonlinear interactions
[Basu, Kumbier, Brown, Yu (2018)]

Binarize LVMi phenotype
“Simplifying” the problem

A new RF feature importance score
Leverages SNP correlations to aggregate weak 
SNP-level importances into more stable, 
stronger gene-level importances



lo-siRF for gene (interaction) recommendations
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Dimension reduction Fit iRF on binarized LVMi Rank genes / interactions



lo-siRF for gene (interaction) recommendations
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Dimension reduction Fit iRF on binarized LVMi Rank genes / interactions



Run GWAS using BOLT-LMM [Loh et al. (2015)] and PLINK [Purcell et al. (2015)]

Select union of top 1000 SNPs from each GWAS run → ~1400 SNPs

Dimension Reduction via GWAS
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● Run GWAS using two methods: 
BOLT-LMM and PLINK

● Select union of top 1000 SNPs 
from each GWAS method

lo-siRF for gene (interaction) recommendations
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Dimension reduction Fit iRF on binarized LVMi Rank genes / interactions



Binarize LVMi phenotype into high and low groups to “simplify” the problem 
(using multiple thresholds: 15%, 20%, 25%)

LVMi Binarization
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For each binarization threshold (15%, 20%, 25%): 
Fit iRF using GWAS-filtered SNP data to predict binarized LVMi

Basu, Kumbier, Brown, Yu. "Iterative random forests to discover predictive and stable high-order interactions." PNAS (2018)

Fit iRF on the binarized iLVM
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GWAS-filtered SNP data Predicted 
Binarized LVMi

Iterative Random Forest (iRF)



Decision Tree
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SNP  A > 0

SNP  B > 1 SNP  A > 1

Predicted probability 
of high LVMi: 0.1 0.8 0.5 0.9



Random Forest
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A collection of decision trees, where 

● each tree is fitted on a different bootstrap version of the data
● features are subsampled at each node

SNP A SNP B

SNP C SNP D
SNP E

SNP B > 1

SNP A

SNP D



Basu, Kumbier, Brown, Yu. "Iterative random forests to discover predictive and stable high-order interactions." PNAS (2018)

Iterative Random Forest (iRF)
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Input:   training data, feature subsampling weights w(1)

Iteration 1

Output:   w(2) ← feature importances (e.g., Gini)

Core idea: iRF induces stability in the RF to improve interpretability



Basu, Kumbier, Brown, Yu. "Iterative random forests to discover predictive and stable high-order interactions." PNAS (2018)

Iterative Random Forest (iRF)
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Input:   training data, feature subsampling weights w(i)

Output:   w(i+1) ← feature importances (e.g., Gini)

Iteration i

Core idea: iRF induces stability in the RF to improve interpretability
*without sacrificing prediction accuracy

iRF → ~55% classification accuracy for LVMi and better than other ML methods



Basu, Kumbier, Brown, Yu. "Iterative random forests to discover predictive and stable high-order interactions." PNAS (2018)

Iterative Random Forest (iRF)
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Do:   Find interactions (commonly co-occurring features)

Last Iteration

Core idea: iRF induces stability in the RF to improve interpretability
*without sacrificing prediction accuracy

iRF → ~55% classification accuracy for LVMi and better than other ML methods



Limitations of iRF
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1. iRF identifies candidate interactions based upon their stability within the RF

Problem: Low-signal phenotype + highly-correlated features → SNP-SNP 
interactions are highly unstable

Solution: Aggregate SNPs at the gene level → gene-gene interactions

Substitute SNPs in RF by their corresponding genes to take 
advantage of correlation structure between nearby SNPs



1. iRF identifies candidate interactions based upon their stability within the RF

Problem: Low-signal phenotype + highly-correlated features → SNP-SNP 
interactions are highly unstable

Solution: Aggregate SNPs at the gene level → gene-gene interactions

2. iRF ranks candidate interactions based upon their frequency within the RF

Problem: Longer genes will naturally be more frequent in the RF

Solution: A new gene-level (or group) feature importance score

Limitations of iRF
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● Using a new stability-based 
importance score to aggregate 
SNP-level importances from 
iRF into a gene-level score

 

● Binarize iLVM phenotype into 
high and low groups to 
“denoise” (using multiple 
thresholds: 15%, 20%, 25%)

● Fit iRF on SNP data to extract 
candidate gene interactions

 

● Run GWAS using two methods: 
BOLT-LMM and PLINK

● Select union of top 1000 SNPs 
from each GWAS method

lo-siRF for gene (interaction) recommendations
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Dimension reduction Fit iRF on binarized LVMi Rank genes / interactions



iRF 
“Global 
importance”

A paradigm shift for feature importances
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lo-siRF
“Local 
importance”
(per-individual)

Low frequency of 
occurrence in RF

High frequency of 
occurrence in RF



A new stability-based feature importance score for RF
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Substitute SNPs in RF by their corresponding genes to take 
advantage of correlation structure between nearby SNPs
For each patient, how frequently is the gene used to make 
that patient’s prediction? 
↳ A more important gene should appear more frequently 

(i.e., is more stable)

For each patient, how frequently is the gene used to make 
that patient’s prediction? 
↳ A more important gene should appear more frequently 

(i.e., is more stable)
from held-out set



Extending to gene-gene interactions
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lo-siRF for gene (interaction) recommendations
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Dimension reduction Fit iRF on binarized LVMi Rank genes / interactions 

● Using a new stability-based 
importance score to aggregate 
SNP-level importances from 
iRF into a gene-level score

 

● Binarize iLVM phenotype into 
high and low groups to 
“denoise” (using multiple 
thresholds: 15%, 20%, 25%)

● Fit iRF on SNP data to extract 
candidate gene interactions

 

● Run GWAS using two methods: 
BOLT-LMM and PLINK

● Select union of top 1000 SNPs 
from each GWAS method



“Domain expert opinion solicitation with negative controls”

We presented three lists to our cardiology experts:

1. Top-ranked genes/interactions

2. Mid-ranked genes/interactions

3. Random genes/interactions

Collaborators (Chad and Euan) chose list #1 :)

A red-herring test for our collaborators
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Chad Weldy



Considering only those genes and gene-gene interactions that were stably 
important across all three binarization thresholds, lo-siRF identifies

● genes that are well-known to impact cell size

TTN     IGF1R

● plausible candidate genes that are known to be associated with the heart

CCDC141     RSPO3     LSP1

● stable gene-gene interactions 

CCDC141–IGF1R     CCDC141–TTN     CCDC141–TNKS

LVMi gene & gene-gene interaction recommendations
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Experimental Validation
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Overview: Experimental Workflow
Qianru Wang Nate Youlton

How do the size of heart cells change when we silence a gene or pair of genes?

Silenced genes/gene pairs:

1. CCDC141
2. IGF1R
3. TTN
4. CCDC141 and IGF1R (interaction)
5. CCDC141 and TTN (interaction)

Across two cell lines:

1. Healthy cell line
2. HCM cell line

39
gene silencing 
(via siRNA transfection)



Ana Kenney Omer Ronen

High-throughput microfluidics + image processing

Qianru Wang

High-speed 
imaging
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https://docs.google.com/file/d/1CMbmxflAvICe5RKH5mtNJlgw0gKaj-Hy/preview


Knocking down genes led to decrease in heart cell sizes
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Healthy Cell Line HCM Cell Line



Epistatic effect sizes

Healthy Cell Line HCM Cell Line



Size differences are most pronounced for large heart cells
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CCDC141–IGF1R

Healthy Cell Line HCM Cell Line



Only possible through 
collaboration

Iterative cycle of feedback is 
crucial for a successful and 
impactful interdisciplinary 

collaboration

Key Takeaways
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Scientific Discovery
Experimentally validated 

epistatic regulation of cardiac 
hypertrophy lo-siRF

A gene and gene-gene 
interaction search 
engine, tailored for 

low-signal data



Thank you!
Q. Wang*, TT*, …, B. Yu, E. Ashley. “Epistasis regulates genetic 

control of cardiac hypertrophy.” Nature Cardiovascular Research 
(2025).

https://www.nature.com/articles/s44161-025-00656-8
https://www.nature.com/articles/s44161-025-00656-8

