# Towards reliable experimental recommendations of gene-gene interactions

#### Tiffany Tang

Applied and Computational Mathematics and Statistics University of Notre Dame

<u>ttang4@nd.edu</u>

### **Our Interdisciplinary Team**





**Bin Yu** 

Ben Brown

Students/Postdocs





Ana Kenney





Tiffany Tang

Omer Ronen

Abhi Agarwal















**Euan Ashley** 

James Priest Victoria Parikh











Chad Weldy

Weston Hughes









Rima Arnaout Atul Butte 2

Outline

1

#### Problem Background

#### 2 Low-signal Iterative Random Forest (lo-siRF) For recommending genes and gene-gene interactions



## **Problem Background**

### A Public Health Crisis: Cardiovascular Disease

Cardiovascular disease (CVD) is the leading cause of death globally and in the US

**17.9 million** people die each year from CVDs

32% of all deaths worldwide

**2x** more Americans died from CVD than COVID-19 in 2020

Risk factors for CVD: poor diet, physical inactivity, tobacco use, genetic factors

## Traditional tools for detecting genetic effects

Historically, research has focused on identifying genetic variants that have **marginally additive effects** on the phenotype



Common tools: genome-wide association studies (GWAS), polygenic risk scores [Khera et al. (2018), Bycroft et al. (2018), Shah et al. (2020), Pirruccello et al. (2020), Meyer et al. (2020), Harper et al. (2021), Khurshid et al. (2022), ...]

Our biological system is far more complex than this  $\rightarrow$  "missing heritability"

#### Beyond the marginally additive curtain: Epistasis

**Epistasis is the non-additive interaction of genetic effects\*** 



\* Many technical definitions: see Bateson (1909), Fisher (1919), Wade et al. (2001), Cordell (2002), Ritchie and Van Steen (2018)

**Computational Challenges:** exhaustive search is computationally expensive

Ex. 100,000 genetic variants  $\rightarrow$  ~5 billion pairwise interactions!

**Statistical Challenges:** unclear what is an *appropriate* statistical model What about higher-order interactions? (Not just pairwise) What about nonlinear interactions? (e.g.,  $f(x_A)f(x_B)$ , not just  $x_A x_B$ )

**Experimental Challenges:** difficult to experimentally assess small effect sizes; requires very precise, high-throughput measurements

## Our aim (very broadly)

# To develop an **end-to-end pipeline** for identifying **genes** and **gene-gene interactions** that affect **cardiovascular disease.**

# Gene / interaction recommendation system

#### Wet-lab experimental validation

**Computationally-tractable** interaction search engine for **higher-order**, **nonlinear** interactions

**Precise, high-throughput** phenotyping via microfluidics-enabled gene silencing experiments

## Which cardiovascular phenotype?

#### Major roadblock with **HCM:**

- ~50% balanced classification accuracy
- Severe under-diagnosis  $\rightarrow$  noisy labels

#### Attempt #1:

#### Hypertrophic Cardiomyopathy (HCM)

- High prevalence (~1 in 500)
- Team's clinical expertise
- Experimental capabilities for measuring cell size

Left Ventricular Hypertrophy

#### Attempt #1: Hypertrophic Cardi

- High prevalence
- Team's clinical e
- Experimental car measuring cell s

## Normal Heart Left Ventricular Hypertrophy



## Left Ventricular Hypertrophy (LVH)

Carries significant independent risk for incident heart failure, atrial arrhythmia, and sudden cardiac death

A distinguishing clinical feature of HCM



## Left Ventricular Hypertrophy (LVH)



Carries significant independent risk for incident heart failure, atrial arrhythmia, and sudden cardiac death

A distinguishing clinical feature of HCM

A quantitative proxy for LVH, **left ventricular mass indexed by body surface area (LVMi)**, can be extracted from cardiac MRIs using deep learning [Bai et al. (2018)]



#### UK Biobank Data

n = 30K patients from white British unrelated population with cardiac MRIs

*p* = 15 million imputed SNPs



14

Epistasis...

#### Our contribution

# We develop an **end-to-end pipeline** for identifying **genes** and **gene-gene interactions** that affect **left ventricular mass.**

## Gene / interaction recommendation system



Wet-lab experimental validation



Computationally-tractable interaction search engine for higher-order, nonlinear interactions

Tailored for **low-signal** phenotypes

Suitable for **high-dimensional** data

**Precise, high-throughput** phenotyping via microfluidics-enabled knockdown experiments

# Low-signal iterative random forest (lo-siRF)



#### Challenges

## Low Signal iRF (lo-siRF)

#### **High-dimensionality**

#### **Finding interactions**

#### Very low signal

#### **Domain-inspired dimension reduction** via GWAS

#### **Iterative Random Forest (iRF)**

A **computationally-efficient** search engine to find stable, higher-order, nonlinear interactions [Basu, Kumbier, Brown, Yu (2018)]



#### **Binarize LVMi phenotype**

"Simplifying" the problem



#### A new RF feature importance score

Leverages SNP correlations to aggregate weak SNP-level importances into more stable, stronger gene-level importances

#### **lo-siRF** for gene (interaction) recommendations



**Dimension reduction** 

Fit iRF on binarized LVMi

Rank genes / interactions

#### **lo-siRF** for gene (interaction) recommendations



```
Dimension reduction
```

Fit iRF on binarized LVMi

Rank genes / interactions

## **Dimension Reduction via GWAS**

Run GWAS using BOLT-LMM [Loh et al. (2015)] and PLINK [Purcell et al. (2015)]

Select union of top 1000 SNPs from each GWAS run  $\rightarrow$  ~1400 SNPs



#### **lo-siRF** for gene (interaction) recommendations



**Dimension reduction** 

Fit iRF on binarized LVMi

Rank genes / interactions

- Run **GWAS** using two methods: BOLT-LMM and PLINK
- Select union of top 1000 SNPs from each GWAS method

## LVMi Binarization

Binarize LVMi phenotype into high and low groups to **"simplify"** the problem (using multiple thresholds: 15%, 20%, 25%)



## Fit iRF on the binarized iLVM

For each binarization threshold (15%, 20%, 25%): Fit iRF using GWAS-filtered SNP data to predict binarized LVMi



#### **Decision Tree**



#### **Random Forest**

#### A collection of decision trees, where

- each tree is fitted on a different **bootstrap** version of the data
- features are subsampled at each node



#### Iterative Random Forest (iRF)

• Core idea: iRF induces **stability** in the RF to improve **interpretability** 



## Iterative Random Forest (iRF)

Core idea: iRF induces **stability** in the RF to improve **interpretability** \*without sacrificing prediction accuracy

iRF  $\rightarrow$  ~55% classification accuracy for LVMi and better than other ML methods



## Iterative Random Forest (iRF)

Core idea: iRF induces **stability** in the RF to improve **interpretability** \*without sacrificing prediction accuracy

iRF  $\rightarrow$  ~55% classification accuracy for LVMi and better than other ML methods



## Limitations of iRF

1. iRF identifies candidate interactions based upon their stability within the RF

**Problem:** Low-signal phenotype + highly-correlated features  $\rightarrow$  SNP-SNP interactions are highly unstable

**Solution:** Aggregate SNPs at the gene level  $\rightarrow$  gene-gene interactions



## Limitations of iRF

1. iRF identifies candidate interactions based upon their stability within the RF

**Problem:** Low-signal phenotype + highly-correlated features  $\rightarrow$  SNP-SNP interactions are highly unstable

**Solution:** Aggregate SNPs at the gene level  $\rightarrow$  gene-gene interactions

iRF ranks candidate interactions based upon their frequency within the RF
Problem: Longer genes will naturally be more frequent in the RF
Solution: A new gene-level (or group) feature importance score

#### **lo-siRF** for gene (interaction) recommendations



#### **Dimension reduction**

#### Fit iRF on binarized LVMi

#### Rank genes / interactions

- Run GWAS using two methods: BOLT-LMM and PLINK
- Select union of top 1000 SNPs from each GWAS method
- **Binarize** iLVM phenotype into high and low groups to *"denoise"* (using multiple thresholds: 15%, 20%, 25%)
- Fit **iRF** on SNP data to extract candidate gene interactions
- Using a new stability-based importance score to aggregate SNP-level importances from iRF into a gene-level score

### A paradigm shift for feature importances



#### A new stability-based feature importance score for RF



#### Extending to gene-gene interactions



#### **lo-siRF** for gene (interaction) recommendations



#### **Dimension reduction**

#### Fit iRF on binarized LVMi

#### Rank genes / interactions

- Run **GWAS** using two methods: BOLT-LMM and PLINK
- Select union of top 1000 SNPs from each GWAS method
- **Binarize** iLVM phenotype into high and low groups to *"denoise"* (using multiple thresholds: 15%, 20%, 25%)
- Fit **iRF** on SNP data to extract candidate gene interactions
- Using a new stability-based importance score to aggregate SNP-level importances from iRF into a gene-level score



#### "Domain expert opinion solicitation with negative controls"

We presented three lists to our cardiology experts:

- 1. Top-ranked genes/interactions
- 2. Mid-ranked genes/interactions
- 3. Random genes/interactions

Collaborators (Chad and Euan) chose list #1:)

## LVMi gene & gene-gene interaction recommendations

Considering only those genes and gene-gene interactions that were stably important across all three binarization thresholds, **lo-siRF identifies** 

• **genes** that are **well-known** to impact cell size

TTN IGF1R

- plausible candidate genes that are known to be associated with the heart CCDC141 RSPO3 LSP1
- stable gene-gene interactions

CCDC141–IGF1R CCDC141–TTN CCDC141–TNKS

## **Experimental Validation**





Qianru Wang

Nate Yo

#### How do the size of heart cells change when we silence a gene or pair of genes?

Silenced genes/gene pairs:

- 1. CCDC141
- 2. *IGF1R*
- 3. TTN
- 4. CCDC141 and IGF1R (interaction)
- 5. CCDC141 and TTN (interaction)

Across two cell lines:

- 1. Healthy cell line
- 2. HCM cell line



39

## High-throughput microfluidics + image processing











Qianru Wang

Ana Kenney On

Omer Ronen

40

#### Knocking down genes led to decrease in heart cell sizes



#### Epistatic effect sizes



#### Size differences are most pronounced for large heart cells



#### Key Takeaways



#### **Scientific Discovery**

Experimentally validated epistatic regulation of cardiac hypertrophy



lo-siRF

A gene and gene-gene interaction search engine, tailored for low-signal data



## Only possible through collaboration

Iterative cycle of feedback is crucial for a successful and impactful interdisciplinary collaboration

# Thank you!

Q. Wang\*, TT\*, ..., B. Yu, E. Ashley. "<u>Epistasis regulates genetic</u> <u>control of cardiac hypertrophy</u>." Nature Cardiovascular Research (2025).