INTEGRATED PRINCIPAL COMPONENTS ANALYSIS (IPCA)

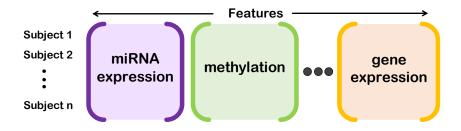
Tiffany Tang University of California, Berkeley July 30, 2019

Joint Statistical Meetings

Joint work with Genevera Allen (Rice University)

MOTIVATION

- · Data Integration + Unsupervised Learning
- \cdot Applications
 - Integrative genomics
 - Multi-modal imaging
 - Multi-sensor data
- Want to find the **joint** patterns which are common among all of the datasets



BACKGROUND

Multiblock PCA

- Concatenated PCA
 - Westerhuis et al. (1998), Wold et al. (1996)
- Multiple Factor Analysis
 - Escofier and Pages (1994), Abdi et al. (2013)

Matrix Factorization Methods

- Joint and Individual Variation Explained (JIVE)
 - Lock et al. (2013)
- Coupled Matrix Factorizations (CMF)
 - Singh and Gordon (2008), Acar et al. (2014)

$$\underset{\mathbf{U},\mathbf{V}_{1},...,\mathbf{V}_{K}}{\operatorname{argmin}} \quad \sum_{k=1}^{K} \|\mathbf{X}_{k} - \mathbf{U} \mathbf{V}_{k}^{\mathsf{T}}\|_{F}^{2}$$

Objective: Extend a model-based PCA to integrated data

- Exploratory Data Analysis
- Joint Pattern Recognition
- Visualization

Key tool: matrix-variate normal distribution

Why? PCA can be viewed as maximizing the sample covariance $\hat{\mathbf{\Delta}} = \frac{1}{n} \mathbf{X}^T \mathbf{X}$

Advantages:

- A unifying framework for the multiblock PCA family
- \cdot $\mathbf{U}'s$ and $\mathbf{V}'s$ are orthogonal, ordered, and nested
- Convenient visualizations
- Nice theoretical properties
 - Global solution important for interpretability and reproducibility
 - Provable guarantees

- 1. iPCA Model
- 2. Case Study: Alzheimer's Disease

IPCA MODEL

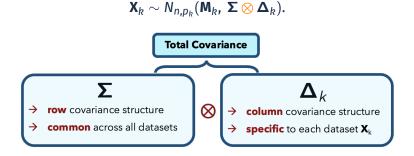
Sample n

Given datasets $X_1, ..., X_K$, assume that each dataset X_k arises from the matrix-variate normal model:

 $\mathbf{X}_k \sim N_{n,D_k}(\mathbf{M}_k, \mathbf{\Sigma} \otimes \mathbf{\Delta}_k).$ $\boldsymbol{\Sigma} \otimes \boldsymbol{\Delta}_{k} = \begin{vmatrix} \sigma_{11} \, \boldsymbol{\Delta}_{k} & \cdots & \sigma_{1n} \, \boldsymbol{\Delta}_{k} \\ \vdots & \ddots & \vdots \\ \sigma_{n1} \, \boldsymbol{\Delta}_{k} & \cdots & \sigma_{nn} \, \boldsymbol{\Delta}_{k} \end{vmatrix}$ Features Sample 1 Sample 2

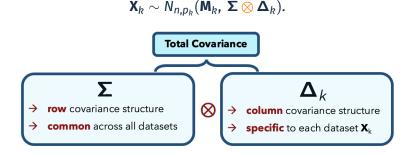
IPCA MODEL

Given datasets $X_1, ..., X_K$, assume that each dataset X_k arises from the matrix-variate normal model:



IPCA MODEL

Given datasets $X_1, ..., X_K$, assume that each dataset X_k arises from the matrix-variate normal model:



Equivalently, can rewrite Kronecker product covariance model as

$$\left[\mathbf{X}_{1}\,\mathbf{\Delta}_{1}^{-1/2},\ldots,\mathbf{X}_{K}\,\mathbf{\Delta}_{K}^{-1/2}\right]_{.j} \stackrel{iid}{\sim} N(\mathbf{0},\boldsymbol{\Sigma})$$

$$\mathbf{X}_k \sim N_{n,p_k}(\mathbf{1}_n \, \boldsymbol{\mu}_k^{\mathsf{T}}, \mathbf{\Sigma} \otimes \mathbf{\Delta}_k)$$

- \cdot **\Sigma** is the common row covariance structure
- Δ_k is the separate column covariance structure

$$\mathbf{X}_k \sim N_{n,p_k}(\mathbf{1}_n \, \boldsymbol{\mu}_k^{\mathsf{T}}, \mathbf{\Sigma} \otimes \mathbf{\Delta}_k)$$

- \cdot **\Sigma** is the common row covariance structure
- Δ_k is the separate column covariance structure
- 2. Estimate covariances Σ , Δ_1 , ..., Δ_K to obtain $\hat{\Sigma}$, $\hat{\Delta}_1$, ..., $\hat{\Delta}_K$
 - •

 $\mathbf{X}_k \sim N_{n,p_k}(\mathbf{1}_n \, \boldsymbol{\mu}_k^{\mathsf{T}}, \mathbf{\Sigma} \otimes \mathbf{\Delta}_k)$

- + $\boldsymbol{\Sigma}$ is the common row covariance structure
- Δ_k is the separate column covariance structure
- 2. Estimate covariances Σ , Δ_1 , ..., Δ_K to obtain $\hat{\Sigma}$, $\hat{\Delta}_1$, ..., $\hat{\Delta}_K$
 - :
- 3. Maximize covariances

$$\mathbf{X}_k \sim \mathsf{N}_{n, \mathcal{P}_k}(\mathbf{1}_n \, oldsymbol{\mu}_k^{\mathsf{T}}, \mathbf{\Sigma} \otimes \mathbf{\Delta}_k)$$

- $\cdot \, \, \Sigma$ is the common row covariance structure
- Δ_k is the separate column covariance structure
- 2. Estimate covariances Σ , Δ_1 , ..., Δ_K to obtain $\hat{\Sigma}$, $\hat{\Delta}_1$, ..., $\hat{\Delta}_K$
- 3. Maximize covariances

 $\mathbf{U} \leftarrow \text{eigenvectors of } \hat{\mathbf{\Sigma}} = \text{joint patterns}$ $\mathbf{V}_k \leftarrow \text{eigenvectors of } \hat{\mathbf{\Delta}}_k = \text{individual patterns}$

$$\mathbf{X}_k \sim \mathsf{N}_{n, \mathcal{P}_k}(\mathbf{1}_n \, oldsymbol{\mu}_k^{\mathsf{T}}, \mathbf{\Sigma} \otimes \mathbf{\Delta}_k)$$

- \cdot **\Sigma** is the common row covariance structure
- Δ_k is the separate column covariance structure
- 2. Estimate covariances Σ , Δ_1 , ..., Δ_K to obtain $\hat{\Sigma}$, $\hat{\Delta}_1$, ..., $\hat{\Delta}_K$
 - •
- 3. Maximize covariances

iPC Scores: $\mathbf{U} \leftarrow$ eigenvectors of $\hat{\boldsymbol{\Sigma}}$ = joint patterns iPC Loadings: $\mathbf{V}_k \leftarrow$ eigenvectors of $\hat{\boldsymbol{\Delta}}_k$ = individual patterns

$$\mathbf{X}_k \sim \mathsf{N}_{n, \mathcal{P}_k}(\mathbf{1}_n \, oldsymbol{\mu}_k^{\mathsf{T}}, \mathbf{\Sigma} \otimes \mathbf{\Delta}_k)$$

- $\cdot \, \, \Sigma$ is the common row covariance structure
- Δ_k is the separate column covariance structure
- 2. Estimate covariances Σ , Δ_1 , ..., Δ_K to obtain $\hat{\Sigma}$, $\hat{\Delta}_1$, ..., $\hat{\Delta}_K$

3. Maximize covariances

iPC Scores: $\mathbf{U} \leftarrow$ eigenvectors of $\hat{\mathbf{\Sigma}}$ = joint patterns iPC Loadings: $\mathbf{V}_k \leftarrow$ eigenvectors of $\hat{\mathbf{\Delta}}_k$ = individual patterns

4. Visualize dominant joint patterns by plotting iPC scores ${f U}$

$$\mathbf{X}_k \sim N_{n,p_k}(\mathbf{1}_n \, \boldsymbol{\mu}_k^{\mathsf{T}}, \mathbf{\Sigma} \otimes \mathbf{\Delta}_k)$$

- \cdot **\Sigma** is the common row covariance structure
- Δ_k is the separate column covariance structure
- 2. Estimate covariances Σ , Δ_1 , ..., Δ_K to obtain $\hat{\Sigma}$, $\hat{\Delta}_1$, ..., $\hat{\Delta}_K$

$$\hat{\boldsymbol{\Sigma}}, \hat{\boldsymbol{\Delta}}_1, \dots, \hat{\boldsymbol{\Delta}}_K = \operatorname{argmax} \ell(\boldsymbol{\Sigma}, \boldsymbol{\Delta}_1, \dots, \boldsymbol{\Delta}_K)$$

3. Maximize covariances

iPC Scores: $\mathbf{U} \leftarrow$ eigenvectors of $\hat{\boldsymbol{\Sigma}}$ = joint patterns iPC Loadings: $\mathbf{V}_k \leftarrow$ eigenvectors of $\hat{\boldsymbol{\Delta}}_k$ = individual patterns

4. Visualize dominant joint patterns by plotting iPC scores ${f U}$

$$\mathbf{X}_k \sim N_{n,p_k}(\mathbf{1}_n \, \boldsymbol{\mu}_k^{\mathsf{T}}, \mathbf{\Sigma} \otimes \mathbf{\Delta}_k)$$

- \cdot **\Sigma** is the common row covariance structure
- Δ_k is the separate column covariance structure
- 2. Estimate covariances Σ , $\Delta_1, ..., \Delta_K$ to obtain $\hat{\Sigma}$, $\hat{\Delta}_1, ..., \hat{\Delta}_K$ $\hat{\Sigma}, \hat{\Delta}_1, ..., \hat{\Delta}_K = \operatorname{argmax} \ell(\Sigma, \Delta_1, ..., \Delta_K) - \sum_{k=1}^K \lambda_k ||\Sigma^{-1} \otimes \Delta_k^{-1}||_F^2$
- 3. Maximize covariances

iPC Scores: $\mathbf{U} \leftarrow$ eigenvectors of $\hat{\boldsymbol{\Sigma}}$ = joint patterns iPC Loadings: $\mathbf{V}_k \leftarrow$ eigenvectors of $\hat{\boldsymbol{\Delta}}_k$ = individual patterns

4. Visualize dominant joint patterns by plotting iPC scores U

Case Study: Alzheimer's Disease (AD)

ROSMAP Study (Bennett et al. (2012))

- Longitudinal clinical-pathological cohort study of aging and AD
- Genomics on post-mortem brains

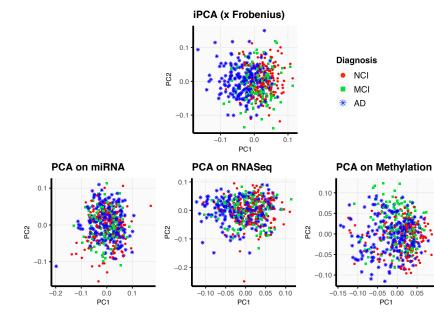
ROSMAP Genomics Data (n = 507)

- miRNA Expression: $p_1 = 309$
- Gene Expression via RNASeq (log-transformed): $p_2 = 900$
- DNA Methylation (m-values): $p_3 =$ 1250

Clinical Outcomes of Interest:

- Clinician's Diagnosis
 - AD, Mild Cognitive Impairment, No Cognitive Impairment
- Global Cognition Score

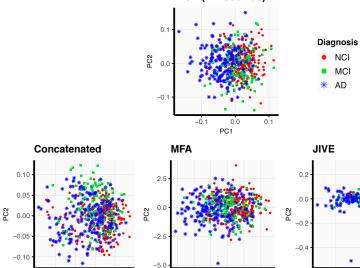
ROSMAP: CLINICIAN'S DIAGNOSIS



ROSMAP: CLINICIAN'S DIAGNOSIS

-0.15 -0.10 -0.05 0.00 0.05

PC1



-3 -2 -1 0

-0.1

2

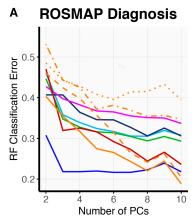
PC1

0.0

PC1

0.1

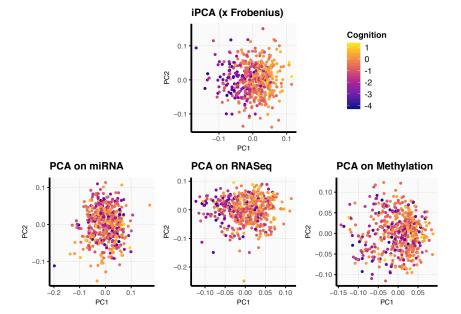
ROSMAP: CLINICIAN'S DIAGNOSIS



Method

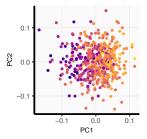
- iPCA (x Frob)
- iPCA (+ Frob)
- iPCA (L1)
- JIVE
 - MFA
 - Concatenated
- PCA on miRNA
- · · PCA on RNASeq
- PCA on Methylation
 - Individual PCAs Combined

ROSMAP: GLOBAL COGNITION

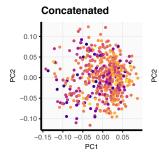


10

ROSMAP: GLOBAL COGNITION



iPCA (x Frobenius)



2.5

0.0

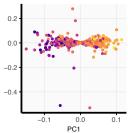
-2.5

-5.0

-3 -2 -1 0

2

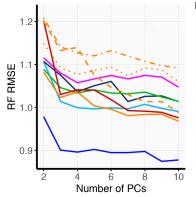
PC1



10

ROSMAP: GLOBAL COGNITION

B ROSMAP Cognition



Method

- iPCA (x Frob)
- iPCA (+ Frob)
- iPCA (L1)
- JIVE
 - MFA
 - Concatenated
- PCA on miRNA
- PCA on RNASeq
- PCA on Methylation
- Individual PCAs Combined

Table 1: Top genetic features obtained by applying Sparse PCA to each
 $\hat{\Delta}_k$ in ROSMAP analysis (using the multiplicative Frobenius iPCA
estimator)

	miRNA	RNASeq	Methylation
1	miR 216a	VGF	TMCO6
2	miR 127 3p	SVOP	PHF3
3	miR 124	PCDHGC5	BRUNOL4
4	miR 30c	ADCYAP1	OSCP1
5	miR 143	LINC01007	GRIN2B

- iPCA is a new practical tool for discovering and visualizing interesting joint patterns which occur in multiple datasets
- In order to fit iPCA, we propose using the multiplicative Frobenius estimator.
- Though we impose a model, the assumptions are analogous to those in classical PCA
- Tang, T. M., & Allen, G. I. (2018). Integrated Principal Components Analysis. *arXiv preprint arXiv:1810.00832*.

Collaborator

• Genevera Allen

Thank you also to...

- ROSMAP Team
 - Joshua Shulman
 - David Bennett
 - Zhandong Liu
 - Ying-Wooi Wan
- Bin Yu

Funding

- National Science Foundation Graduate Research Fellowship
- Office of Naval Research

Thank you!