Integrated Principal Components Analysis (iPCA)

Tiffany Tang University of California, Berkeley July 30, 2019

Joint Statistical Meetings

Joint work with Genevera Allen (Rice University)

MOTIVATION

- Data Integration + Unsupervised Learning
- Applications
	- Integrative genomics
	- Multi-modal imaging
	- Multi-sensor data
- Want to find the **joint** patterns which are common among all of the datasets

BACKGROUND

Multiblock PCA

- Concatenated PCA
	- *Westerhuis et al. (1998), Wold et al. (1996)*
- Multiple Factor Analysis
	- *Escofier and Pages (1994), Abdi et al. (2013)*

Matrix Factorization Methods

- Joint and Individual Variation Explained (JIVE)
	- *Lock et al. (2013)*
- Coupled Matrix Factorizations (CMF)
	- *Singh and Gordon (2008), Acar et al. (2014)*

$$
\underset{\boldsymbol{\mathsf{U}},\boldsymbol{\mathsf{V}}_1,\dots,\boldsymbol{\mathsf{V}}_K}{\operatorname{argmin}} \quad \sum_{k=1}^K \|\boldsymbol{\mathsf{X}}_k - \boldsymbol{\mathsf{U}} \boldsymbol{\mathsf{V}}_k^T\|_F^2
$$

Objective: Extend a model-based PCA to integrated data

- Exploratory Data Analysis
- Joint Pattern Recognition
- Visualization

Key tool: matrix-variate normal distribution

Why? PCA can be viewed as maximizing the sample covariance $\hat{\mathbf{\Delta}} = \frac{1}{n}$ $\frac{1}{n}$ **X**^T **X**

Advantages:

- A unifying framework for the multiblock PCA family
- **U**'s and **V**'s are orthogonal, ordered, and nested
- Convenient visualizations
- Nice theoretical properties
	- Global solution important for interpretability and reproducibility
	- Provable guarantees
- 1. iPCA Model
- 2. Case Study: Alzheimer's Disease

iPCA Model

Given datasets $\mathbf{X}_1, ..., \mathbf{X}_K$, assume that each dataset \mathbf{X}_k arises from the matrix-variate normal model:

 \mathbf{X}_k ∼ $N_{n,p_k}(\mathbf{M}_k, \Sigma \otimes \mathbf{\Delta}_k)$. $\sqrt{ }$ $\sigma_{11} \Delta_k$ · · · $\sigma_{1n} \Delta_k$ 1 .
.
. $$ \parallel $\overline{}$ σ_{n1} Δ_k \cdots σ_{nn} Δ_k **Features** Sample 1 Sample 2 Sample n

iPCA Model

Given datasets $X_1, ..., X_K$, assume that each dataset X_k arises from the matrix-variate normal model:

iPCA Model

Given datasets $X_1, ..., X_K$, assume that each dataset X_k arises from the matrix-variate normal model:

Equivalently, can rewrite Kronecker product covariance model as

$$
\left[\mathbf{X}_1 \boldsymbol{\Delta}_1^{-1/2}, \dots, \mathbf{X}_K \boldsymbol{\Delta}_K^{-1/2}\right]_{.j} \stackrel{iid}{\sim} N(\mathbf{0}, \boldsymbol{\Sigma})
$$

$$
\mathbf{X}_k \sim N_{n,p_k}(\mathbf{1}_n \,\boldsymbol{\mu}_k^T, \boldsymbol{\Sigma} \otimes \boldsymbol{\Delta}_k)
$$

- \cdot Σ is the common row covariance structure
- ∆*^k* is the separate column covariance structure

$$
\mathbf{X}_k \sim N_{n,p_k}(\mathbf{1}_n \,\boldsymbol{\mu}_k^T, \boldsymbol{\Sigma} \otimes \boldsymbol{\Delta}_k)
$$

- \cdot Σ is the common row covariance structure
- ∆*^k* is the separate column covariance structure
- 2. Estimate covariances **Σ**, ${\bf \Delta}_1, ..., {\bf \Delta}_K$ to obtain ${\bf \hat{\Sigma}},$ ${\bf \hat{\Delta}}_1, ..., {\bf \hat{\Delta}}_K$
	-

. . .

 \mathbf{X}_k ∼ N_{n,p_k} $($ **1** $_n$ $\boldsymbol{\mu}_k^T$, Σ ⊗ $\boldsymbol{\Delta}_k$ $)$

- \cdot Σ is the common row covariance structure
- ∆*^k* is the separate column covariance structure
- 2. Estimate covariances **Σ**, ${\bf \Delta}_1, ..., {\bf \Delta}_K$ to obtain ${\hat{\bf \Sigma}},$ ${\hat{\bf \Delta}}_1, ..., {\hat{\bf \Delta}}_K$

3. Maximize covariances

. . .

$$
\mathbf{X}_k \sim N_{n,p_k}(\mathbf{1}_n \,\boldsymbol{\mu}_k^T, \boldsymbol{\Sigma} \otimes \boldsymbol{\Delta}_k)
$$

- \cdot Σ is the common row covariance structure
- ∆*^k* is the separate column covariance structure
- 2. Estimate covariances **Σ**, ${\bf \Delta}_1, ..., {\bf \Delta}_K$ to obtain ${\bf \hat{\Sigma}},$ ${\bf \hat{\Delta}}_1, ..., {\bf \hat{\Delta}}_K$
	- . . .
- 3. Maximize covariances

U \leftarrow eigenvectors of $\hat{\Sigma}$ = joint patterns **V** $_{k}$ \leftarrow eigenvectors of $\hat{\mathbf{\Delta}}_{k}$ = individual patterns

$$
\mathbf{X}_k \sim N_{n,p_k}(\mathbf{1}_n \,\boldsymbol{\mu}_k^T, \boldsymbol{\Sigma} \otimes \boldsymbol{\Delta}_k)
$$

- \cdot Σ is the common row covariance structure
- ∆*^k* is the separate column covariance structure
- 2. Estimate covariances **Σ**, ${\bf \Delta}_1, ..., {\bf \Delta}_K$ to obtain ${\bf \hat{\Sigma}},$ ${\bf \hat{\Delta}}_1, ..., {\bf \hat{\Delta}}_K$
	- . . .
- 3. Maximize covariances

iPC Scores: $\mathbf{U} \leftarrow$ eigenvectors of $\hat{\mathbf{\Sigma}}$ = joint patterns iPC Loadings: $\mathbf{V}_k \leftarrow$ eigenvectors of $\hat{\mathbf{\Delta}}_k$ = individual patterns

$$
\mathbf{X}_k \sim N_{n,p_k}(\mathbf{1}_n \,\boldsymbol{\mu}_k^T, \boldsymbol{\Sigma} \otimes \boldsymbol{\Delta}_k)
$$

- \cdot Σ is the common row covariance structure
- ∆*^k* is the separate column covariance structure
- 2. Estimate covariances **Σ**, ${\bf \Delta}_1, ..., {\bf \Delta}_K$ to obtain ${\bf \hat{\Sigma}},$ ${\bf \hat{\Delta}}_1, ..., {\bf \hat{\Delta}}_K$
	- . .

.

3. Maximize covariances

iPC Scores: $$ iPC Loadings: $\mathbf{V}_k \leftarrow$ eigenvectors of $\hat{\mathbf{\Delta}}_k$ = individual patterns

4. Visualize dominant joint patterns by plotting iPC scores **U**

$$
\mathbf{X}_k \sim N_{n,p_k}(\mathbf{1}_n \,\boldsymbol{\mu}_k^T, \boldsymbol{\Sigma} \otimes \boldsymbol{\Delta}_k)
$$

- \cdot Σ is the common row covariance structure
- ∆*^k* is the separate column covariance structure
- 2. Estimate covariances **Σ**, ${\bf \Delta}_1, ..., {\bf \Delta}_K$ to obtain ${\bf \hat{\Sigma}},$ ${\bf \hat{\Delta}}_1, ..., {\bf \hat{\Delta}}_K$

$$
\hat{\Sigma}, \hat{\Delta}_1, ..., \hat{\Delta}_K = \text{argmax} \ \ell(\Sigma, \Delta_1, ..., \Delta_K)
$$

3. Maximize covariances

iPC Scores: $$ iPC Loadings: $\mathbf{V}_k \leftarrow$ eigenvectors of $\hat{\mathbf{\Delta}}_k$ = individual patterns

4. Visualize dominant joint patterns by plotting iPC scores **U**

$$
\mathbf{X}_k \sim N_{n,p_k}(\mathbf{1}_n \,\boldsymbol{\mu}_k^T, \boldsymbol{\Sigma} \otimes \boldsymbol{\Delta}_k)
$$

- \cdot Σ is the common row covariance structure
- ∆*^k* is the separate column covariance structure
- 2. Estimate covariances **Σ**, ${\bf \Delta}_1, ..., {\bf \Delta}_K$ to obtain ${\bf \hat{\Sigma}},$ ${\bf \hat{\Delta}}_1, ..., {\bf \hat{\Delta}}_K$ $\hat{\boldsymbol{\Sigma}}, \hat{\boldsymbol{\Delta}}_{1}, ..., \hat{\boldsymbol{\Delta}}_{K} = \text{argmax} \,\, \ell(\boldsymbol{\Sigma}, \boldsymbol{\Delta}_{1}, ..., \boldsymbol{\Delta}_{K}) - \, \sum_{i=1}^{K}$ *K k*=1 $|\lambda_k|$ | Σ^{−1} ⊗ Δ $^{-1}_{k}$ || $^{2}_{F}$
- 3. Maximize covariances

iPC Scores: $\mathbf{U} \leftarrow$ eigenvectors of $\hat{\mathbf{\Sigma}}$ = joint patterns iPC Loadings: $\mathbf{V}_k \leftarrow$ eigenvectors of $\hat{\mathbf{\Delta}}_k$ = individual patterns

4. Visualize dominant joint patterns by plotting iPC scores **U**

Case Study: Alzheimer's Disease (AD)

ROSMAP Study (*Bennett et al. (2012)*)

- Longitudinal clinical-pathological cohort study of aging and AD
- Genomics on post-mortem brains

ROSMAP Genomics Data (*n* = 507)

- miRNA Expression: $p_1 = 309$
- Gene Expression via RNASeq (log-transformed): $p_2 = 900$
- DNA Methylation (m-values): $p_3 = 1250$

Clinical Outcomes of Interest:

- Clinician's Diagnosis
	- AD, Mild Cognitive Impairment, No Cognitive Impairment
- Global Cognition Score

ROSMAP: CLINICIAN'S DIAGNOSIS

iPCA (x Frobenius)

ROSMAP: CLINICIAN'S DIAGNOSIS

PC₁

iPCA (x Frobenius)

PC₁

 0.1

PC1

ROSMAP: CLINICIAN'S DIAGNOSIS

Method

- iPCA (x Frob)
- iPCA (+ Frob)
- iPCA (L1)
- **JIVE**
	- **MFA**
	- Concatenated
- PCA on miRNA
- PCA on RNASeq
- PCA on Methylation
- Individual PCAs Combined

ROSMAP: GLOBAL COGNITION

 10

ROSMAP: GLOBAL COGNITION

iPCA (x Frobenius)

 2.5

 0.0

 -2.5

 -5.0

 $\frac{1}{3}$

 -2 -1 $\overline{0}$

PC₁

 $\frac{1}{2}$

10

ROSMAP: GLOBAL COGNITION

 $\mathbf B$ **ROSMAP Cognition**

Method

- iPCA (x Frob)
- iPCA (+ Frob)
- iPCA (L1)
- **JIVE**
	- **MFA**
	- Concatenated
- PCA on miRNA
- PCA on RNASeq
- PCA on Methylation
- Individual PCAs Combined

Table 1: Top genetic features obtained by applying Sparse PCA to each $\hat{\mathbf{\Delta}}_k$ in ROSMAP analysis (using the multiplicative Frobenius iPCA estimator)

- iPCA is a new practical tool for discovering and visualizing interesting joint patterns which occur in multiple datasets
- In order to fit iPCA, we propose using the multiplicative Frobenius estimator.
- Though we impose a model, the assumptions are analogous to those in classical PCA
- Tang, T. M., & Allen, G. I. (2018). Integrated Principal Components Analysis. *arXiv preprint arXiv:1810.00832.*

Collaborator

• Genevera Allen

Thank you also to...

- ROSMAP Team
	- Joshua Shulman
	- David Bennett
	- Zhandong Liu
	- Ying-Wooi Wan
- Bin Yu

Funding

- National Science Foundation Graduate Research Fellowship
- Office of Naval Research

Thank you!