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Biomarker development for early cancer detection

+ Early detection of cancer often leads to more effective treatment and a
drastically higher chance of survival

+ However, ~50% of cancers are detected at late stages [Crosby et al. (2022)]

+ Biomarkers have long offered a valuable m2018 #2019 %2020 %2021 w2022
opportunity to improve early cancer detection
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+ Pancreatic cancer: CA19-9
+ Breast cancer: HER2, BRCA1/2

Percentage of documents

+ Ensuring the reliability of biomarkers is the goal, JI
but very challenging ("the valley of death") & &

+ >500 biomarkers fail rigorous EDRN validation ¢

[Srivastava (2023)] Growth of biomarker-related papers over time
[Tenchov et al. (2024)]
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https://www.science.org/doi/10.1126/science.aay9040#:~:text=BACKGROUND,could%20substantially%20increase%20survival%20rates.
https://pubs.acs.org/doi/10.1021/acsptsci.3c00346
https://prevention.cancer.gov/sites/default/files/2023-02/EDRN_Accomplishments_Future_Outlook.pdf

Biomarker development for early prostate cancer detection

Prostate cancer: a leading cause of cancer death in the developed world

~ 11N 8 men are diagnosed with prostate cancer in their lifetime

~ 11N 44 men will die of prostate cancer

+ Unclear benefits of current screening procedures via prostate-specific antigen (PSA)

+ High rate of invasive biopsies and false positives
(i.e., overdiagnosis and overtreatment of indolent cancers)

+ Can we create a reliable non-invasive urine-based biomarker test to detect
prostate cancer with greater accuracy than PSA?

Source: American Cancer Society (2025)
Tiffany Tang
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https://www.cancer.org/cancer/types/prostate-cancer/about/key-statistics.html

Prior Work: MyProstateScore2.0 (MPS2)

Research

JAMA Oncology | Original Investigation

Development and Validation of an 18-Gene Urine Test
for High-Grade Prostate Cancer

Jeffrey J. Tosoian, MD, MPH; Yuping Zhang, PhD; Lanbo Xiao, PhD; Cassie Xie, MS; Nathan L. Samora, MD; Yashar S. Niknafs, PhD; Zoey Chopra, MA;
Javed Siddiqui, MS; Heng Zheng, MD; Grace Herron, BA; Neil Vaishampayan, BS; Hunter S. Robinson, MD; Kumaran Arivoli, BS; Bruce J. Trock, PhD;
Ashley E. Ross, MD, PhD; Todd M. Morgan, MD; Ganesh S. Palapattu, MD; Simpa S. Salami, MD, MPH; Lakshmi P. Kunju, MD; Scott A. Tomlins, MD, PhD;
Lori J. Sokoll, PhD; Daniel W. Chan, PhD; Sudhir Srivastava, PhD; Ziding Feng, PhD; Martin G. Sanda, MD; Yingye Zheng, PhD; John T. Wei, MD;

Arul M. Chinnaiyan, MD, PhD; for the EDRN-PCA3 Study Group

Supplemental content
IMPORTANCE Benefits of prostate cancer (PCa) screening with prostate-specific antigen (PSA)
alone are largely offset by excess negative biopsies and overdetection of indolent cancers result-
ing from the poor specificity of PSA for high-grade PCa (ie, grade group [GG] 2 or greater).

OBJECTIVE To develop a multiplex urinary panel for high-grade PCa and validate its external
performance relative to current guideline-endorsed biomarkers.
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Prior Work: MyProstateScore2.0 (MPS2)

Training/Development Cohort Data
Primary

Gene expression  Clinical Variables Out
(54 genes*) utcome

Clinically-significant
prostate cancer
(grade group 2

or higher)

predict

—

(n=761)

Samples

?
Cycle threshold (CT) values from J Clinical Variables
age, race, family history, abnormal DRE,

custom multiplex qPCR panel
prior negative biopsy, prostate volume
(optional)

* Carefully selected out of 58,724 genes based on differential expression and predefined nomination criteria
University of Notre Dame (ACMS)
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Prior Work: MyProstateScore2.0 (MPS2)

Model Development

“tamingeohot .+ Final (locked) model: logistic regression + elastic net
(n=761) | . . . . .
Repestd 10 tmee ; using 18 genes and clinical variables as predictors
' - x l + Why 18? Chosen to fit in OpenArray™ platform
split1 split2 split3 split4 | . .
| | | |1t Evaluated on external validation cohort from EDRN
mo'del model mo'del model | o
! i 3 I . AUROC Method
2 1 18 genes with
o i -, 81.8% MPS2+ progse‘}cgte \\;\(I)Ilume
ity e 18 genes without
inlpafzgzs?:y Ji'm?;ﬂo) % o 80.7% MPS2 progstate volume
l § N 73.7% MPS 3 genes + clinical
Top 17 genes were selected to
build the final model on entire
L______________frfi'!?ftﬁt __________________ o 59.7% PSA current standard
| [ | [ [ |
Testmmevdlidaﬁmcotm 0 20 40 60 80 100

100-Specificity (%)
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What's the problem? Unaccounted uncertainty

There are numerous human judgment calls (or choices) throughout MPS2 development

Updating domain Domain
knowledge problem
Interpreting and ° Data
communicating results collection
Human

Scrutinization
of results

Data cleaning and
pre-processing

judgment
calls

4

Exploratory
& Q w data analysis

Exploration of
intrinsic data structures

Predictive and/or
inferential analysis

The Data Science Life Cycle [yu and Barter (2024)]
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What's the problem? Unaccounted uncertainty

There are numerous human judgment calls (or choices) throughout MPS2 development
Data Cleaning Choices

Updating domain Domain
knowledge roblem
° y + How to threshold CT
Interpreting and 5 Data values if undetermined
communicating results collection or no ampllﬁcatlon
+ Sample filtering/quality
Human control choices

Data cleaning and +
pre-processing

Scrutinization
of results

judgment
calls

4
Predictive and/or Exploratory
inferential analysis data analysis

Exploration of
intrinsic data structures

The Data Science Life Cycle [yu and Barter (2024)]
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What's the problem? Unaccounted uncertainty

There are numerous human judgment calls (or choices) throughout MPS2 development
Data Cleaning Choices

Updating domain Domain
moweege pre e + How to threshold CT
- values if undetermined
collection or no amplification

+ Sample filtering/quality
control choices

Modeling Choices Interpreting and
communicating results
+ Which model?
+ Which clinical Human

variables? o .
o judgment
calls

Data cleaning and +
+ Which genes? pre-processing
At a minimum, our scientific

4 conclusions should be stable
Predictive and/or Exploratory across reasonable data and

inferential analysis & data analysis i )
modeling perturbations
[loannidis (2005); Kraft et al. (2009);

Exploration of

intrinsic data structures Donoho (2010); Casadevall and Fang
) ) (2011); Nosek et al. (2012); Yu (2013),
The Data Science Life Cycle [Yu and Barter (2024)] Gelman and Loken (2014), ..]
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PCS Framework for Veridical Data Science (vu and kumbier (2020)]

Three principles for veridical (trustworthy) data science

Predictability: is my model a good representation

0‘ ‘%Predlctablllty

of reality (as measured by prediction accuracy)? g

‘.,\"“ G “d"“‘h:&\‘l‘
Computability: is my pipeline computable? “% <

Computability

Stability: are my model/findings stable across

reasonable perturbations of the data science
life cycle?
1\Stability

Credits: Rebecca Barter
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https://www.pnas.org/doi/10.1073/pnas.1901326117

Stress-testing MPS2 under the PCS framework

Inner 95% quantile range of AUROCs from repeated CV
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Difference between mean AUROC across data preprocessing pipelines << across methods
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Improving MPS2 using the PCS framework

Beyond stress-testing, the PCS framework can also be used to improve the model
development process.

Example: Do we need all 18 genes or can we develop a simpler, cheaper gene panel?

+ We developed a simplified MPS2 (sMPS2) model, which uses only 7 genes and
achieves similar accuracy as the 18-gene MPS2 model.

+ Key Steps:

+ Use prediction performance as a reality check and exclude models that don't fit

the data well
Select features that were stably important across data and model perturbations

+ Very careful data splitting

University of Notre Dame (ACMS)
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sMPS2: Model Development

Data

54 genes

Development
Set

Test Set
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sMPS2: Model Development

Data 1. Prediction Check
4 N\
54 genes Bafa < Model 1 —> Valid. Error
Pre-processing 1\ yyode1 3 — Valid. Error
Data < Model 1 — Valid. Error
Training Set Pre-processing 2\ \1odel 3 —> Valid. Error
Development Model 1 —> Valid. Error
Set —> Data {
Fresprocessing;3 Model 3 —> Valid. Error
Dita < Model 1 —> Valid. Error
Validation Set Pre-processing 4 '\ \odel 3 — Valid. Error
L jx4 CcVv
Test Set %, il

Use prediction performance as a reality check
(Exclude pipelines (e.g., FIGS) with poor fits)
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sMPS2: Model Development

Data

54 genes

1. Prediction Check

Development
Set

Training Set

Validation Set

Test Set

C

Data
Pre-processing 1

Data
Pre-processing 2

Data
Pre-processing 3

Data
Pre-processing 4

<

%
<
S

~
Model 1 —> Valid. Error

Model 3 —> Valid. Error
Model 1 — Valid. Error

Model 3 —> Valid. Error
Model 1 —> Valid. Error

Model 3 —> Valid. Error
Model 1 —> Valid. Error

Model 3 —> Valid. Error

2. Stability-driven Gene Ranking

—» Gene Ranks Model- Y
Ensembled
L_» Gene Ranks J Gene Ranks

Model-
Ensembled
Gene Ranks

—» Gene Ranks

—» Gene Ranks

Ensembled

L_» Gene Ranks J Gene Ranks

Model-
Ensembled

—» Gene Ranks

—» Gene Ranks } Model-

L » Gene Ranks J Gene Ranks J

PCS-

% Ensembled

Gene Ranks

jx4 Ccv

folds /

Tiffany Tang

Use prediction performance as a reality check

(Exclude pipelines (e.g., FIGS) with poor fits)
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sMPS2: Model Development

Data 1. Prediction Check 2. Stability-driven Gene Ranking
( )
54 genes Baf Model 1 —> Valid. Error }—» Gene Ranks Model- )
P ala —_— < Ensembled
re-processing Model 3 —> Valid. Error |—» Gene Ranks ) Gene Ranks
Dat Model 1 — Valid. Error | Gene Ranks Model-
Pre pro?easlsing 2 < Enisemblod PCS-
Training Set Model 3 —> Valid. Error |— Gene Ranks . Gene Ranks . Ensembled
Development " - Model 1 — Valid. Error }—» Gene Ranks Model- Gene Ranks
Set ai. 3 < Ensembled
Flesplocessing Model 3 —> Valid. Error | Gene Ranks ] Gene Ranks
Dat Model 1 —> Valid. Error | Gene Ranks Model-
P aia ing 4 < Ensembled
Validation Set TE-RIRCEsSg Model 3 —> Valid. Error | Gene Ranks J Gene Ranks
P Model- Model- PCS-
L X specific ensembled/ \ensembled
Test Set - falds)
x10 Development-Test splits

Use prediction performance as a reality check Ensemble feature importances
(Exclude pipelines (e.g., FIGS) with poor fits)  across data & model perturbations
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sMPS2: Model Development

Examining these PCS-ensembled gene rankings reveals 6-7 very staby important genes
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Gene

* Mean ranking is only one stability metric

+ There are many others ways to evaluate stability (e.g., % in top R)
+ Other stability metrics showed APOC1 is not as stable

Tiffany Tang
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sMPS2: Internal Validation

+ 6-7 top stably important genes yielded the best (or competitively high) test AUROC
compared to using different number of gene predictors

+ PCS-ensembled gene rankings > model-ensembled or model-specific

k genes

Gene Ranking

Development
Sel

Test Set

Internal Validation: Evaluating Selected Genes

Data Model 1 —> Test Error
Pre-processing 1

Model 3 —> Test Error
Data < Model 1 —> Test Error

Pre-processing 2\ \jodel 3 — Test Error

Data

Model 1 —> Test Error
Pre-processing 3 <

Model 3 —> Test Error

Data

Model 1 —> Test Error
Pre-processing 4 <

Model 3 —> Test Error

4

x10 Development-Test splits

Tiffany Tang
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sMPS2: Internal Validation

+ 6-7 top stably important genes yielded the best (or competitively high) test AUROC
compared to using different number of gene predictors

+ PCS-ensembled gene rankings > model-ensembled or model-specific

[ cuiimit=a0 |
Internal Validation: Evaluating Selected Genes 1 1
0.80 ] >
k genes o i .
| |
o | I
g Data < Model 1 —> Test Error < . | i
i . < : ;
§ Pre-processing 1 Model 3 —> Test Error 5 i i
s .
= = | | Gene Ranking
= Data < Model 1 —> Test Error 070 i i Mode
= | Development | /7 Prerprocessin 2 \. podet s — Test o Fhorm- o =21 | g (o oenied
0 Sample Exclusion
Set i Model 1 —> Test Error ] g Model-ensembled
. 1 ] Model-specific
Pre-processing 3 < Model 3 Test Error 080{ i !
L I
o |
o]
Data Model 1 —> Test Error & :
Pre-processing 4 07 i
Model 3 —> Test Error £ z:
(7]
s ]
Test Set } 0.72 :
i 1
x10 Development-Test splits 0 20 40 0 20 40

Number of Predictor Genes
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sMPS2: External Validation (EDRN)

+ Final (locked) model: logistic regression + ridge using 7 genes (6 stably important
genes + 1 reference gene KLK3) and clinical variables

Without prostate volume With prostate volume
AUROC Method AUROC Method
80.7% MPS2 18 genes 81.8% MPS2+ 18 genes
78.5% s8MPS2 s genes 80.9% SSMPS2+ 8 genes
78.4% Ss’MPS2 7 genes 80.6% S'MPS2+ 7genes
73.7% MPS  3genes 73.7% MPS 3 genes
59.7% PSA  current standard 59.7% PSA current standard

+ Difference between MPS2 and sMPS2 is smaller than uncertainty due to data
preprocessing choices (~2%)

University of Notre Dame (ACMS) 21

Tiffany Tang




Summary and Discussion

Using the PCS framework, we:

+ Rigorously stress-tested MPS2 for early prostate cancer detection
+ Simplified the 18-gene MPS2 model to a 7-gene sMPS2 model with similar accuracy

Still, there are human judgment calls throughout this analysis
- needs documentation and justification

Thank you!

Email: ttang4@nd.edu
Website: tiffanymtang.github.io/
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